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Abstract. The overall purpose of our work is to take advantage of Thermal Infra-Red (TIR) imagery to estimate landscape

evapotranspiration fluxes over agricultural areas, relying on two approaches of increasing complexity and input data needs : a

Surface Energy Balance (SEB) model, TSEB, used directly at the landscape scale with TIR forcing, and the aggregation of a

Soil-Vegetation-Atmosphere Transfer (SVAT) model, SEtHyS, run at high resolution ('100 m) and constrained by assimilation

of TIR data. Within this preliminary study, models skills are compared thanks to large in situ database covering different crops,5

stress and climate conditions. Domains of validity are assessed and the possible loss of performance resulting from inaccurate

but realistic inputs (forcing and model parameters) due to scaling effects are quantified. The in situ data set came from 3

experiments carried out in southern France and in Morocco. On average, models provide half-hourly averaged estimations of

latent heat flux (LE) with a RMSE of around 55Wm−2 for TSEB and 47Wm−2 for SEtHyS, and estimations of sensible heat

flux (H) with a RMSE of around 29 Wm−2 for TSEB and 38 Wm−2 for SEtHyS. TSEB has been shown to be more flexible10

and requires one single set of parameters but lead to low performances on rising vegetation and stressed conditions. An in-depth

study on the Priestley-Taylor key parameter highlights its marked diurnal cycle and the need to adjust its value to improve

flux partition between sensible and latent heat fluxes (1.5 and 1.25 for south-western France and Morocco, respectively).

Optimal values of 1.8 to 2 were hilighted under cloudy conditions, which is of particular interest with the emergence of low

altitude drone acquisition. SEtHyS is valid in more cases while it required a finer parameters tuning and a better knowledge15

of surface and vegetation. This study participates to lay the ground for exploring the complementarities between instantaneous

and continuous dynamic evapotranspiration mapping monitored with TIR data.

1 Introduction

Exchange of water at the soil-vegetation-atmosphere interface is of prime importance for weather forecasting and for climate

studies (Shukla and Mintz, 1982); it is also a key component for hydrology, and therefore catchment water balance (Milly,20

1994), and for agronomy in order to improve irrigation scheduling (Allen et al., 1998). Despite the abundant literature on the

1

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-295
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 17 September 2018
c© Author(s) 2018. CC BY 4.0 License.



subject, there is no consensual approach for its spatialized estimation, and the contribution of evapotranspiration (ET) to the

global hydrologic cycle remains uncertain (Jasechko et al., 2013). There are several in situ techniques available to measure ET

(Allen et al., 2011) but most suffer from a lack of spatial representativeness. This prevents their use as a sustainable solution

for regional applications, especially for agricultural landscape where spatial heterogeneity –in terms of farming and technical

itineraries including the resulting pattern of moisture conditions– is high. By contrast, remote sensing offers an attractive alter-5

native through the synoptic and repeated data acquisition it provides. Indeed, even if ET is not directly observable from space,

remote sensing data in different parts of the electromagnetic spectrum are related to the characteristics of the land surface

governing the evapotranspiration process.

Within this context, several approaches combining remote sensing data and land surface models of various complexity were

proposed for the regional monitoring of ET (Courault et al., 2005), from the most conceptual approaches modulating the10

evaporative demand by an empirical coefficient (the so called “crop coefficient”, Allen et al., 1998), to the complex and

mechanistically-based Soil-Vegetation-Atmosphere Transfer (SVAT) models that require a large number of inputs. In-between,

the surface energy balance (SEB) models, constrained by thermal-infrared radiative temperature observations, have been gain-

ing influence over the last decade (Choi et al., 2009; Chirouze et al., 2014; Diarra et al., 2017). Several authors intercompared

the different SEB-based approaches for mapping ET with noticeable discrepancies (see Zhan et al., 1996; French et al., 2005;15

Timmermans et al., 2007, 2011). By contrast, Kalma et al. (2008) reviewed the different methods to estimate surface evap-

otranspiration based on surface temperature derived from remote sensing data and highlights similar accuracies on average.

Some other studies (Franks and Beven, 1999; Schuurmans et al., 2003; Meijerink et al., 2005; Crow et al., 2005) discussed

the complementarities between simple instantaneous SEB and more complex SVAT modeling approaches to improve surface

turbulent fluxes estimations through data assimilation thanks to their independent modeling errors. Nevertheless, both method-20

ologies, SEB or SVAT-based, were rarely compared in literature (apart from Crow et al., 2005) due to the different underlying

diagnostic or prognostic equations of the models with respect to the distinct purposes of the approaches in terms of temporal

and/or spatial resolutions of evapotranspiration estimates. Either based on SVAT or SEB models, the estimation of surface

evapotranspiration implies dealing with the method-model complexity issue (Carlson, 2007; Kalma et al., 2008), and with

the always incomplete knowledge to document or to constrain them. This has partly to do with the trade-off between revisit25

frequency and resolution for actual TIR sensors. For the higher resolution, another source of uncertainty is coming from to the

surface temperature fluctuations in relation with atmospheric turbulence (Lagouarde et al., 2013). Remotely sensed TIR data

are available either at high spatial resolution and low temporal frequency or vice versa. McCabe and Wood (2006) have shown

how spatial resolution of TIR data used as input in SEB method impacted the spatial variation of flux estimates. The lack of

knowledge on scaling effects when fluxes are intercompared at the same scales using aggregation or disaggregation methods30

was pointed out by several authors (Kustas et al., 2003, 2004; Norman et al., 2003). Within this context, the overall purpose of

our work is to compare both methodologies in order to estimate spatially distributed evapotranspiration on agricultural land-

scapes at high ('100m) and intermediate ('1km) spatial resolutions. This study specifically focuses on the comparison of the

TSEB model (Norman et al., 1995) and the SEtHyS SVAT model (described in Coudert et al., 2006) constrained with TIR data.

The more specific purpose is twofold: (1) accuracy assessment through the confrontation of both methodologies to a large in35
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situ database acquired in the South West of France and in Morocco with a discussion on the domain of validity of the models;

(2) a comprehensive sensitivity analysis to uncertainties in terms of inputs and parameters and a discussion on the selection

strategy of the parameters set. This paper is organized as follows. After briefly introducing data sets and both models (Sect. 2),

the analysis of the models performances is presented (Sect. 3.1). Then, we focus on sensitivity analysis results (Sect. 3.2) and

on discussions related to parameters and inputs (Sect. 4). Finally, conclusions and perspectives are drawn in Sect. 5.5

2 Data and methods

2.1 Models description

The formulation of the two-source energy balance system, which is similar in both models is firstly described. Then, differences

in the solving method and associated assumptions, together with differences in flux parameterization, are briefly reminded.

2.1.1 The two-source energy budget10

In the two-source energy balance, total sensible (H) and total latent heat (LE) fluxes arise from the soil and vegetation heat and

vapor sources. Applying energy conservation and continuity principles, the energy budget can be described with the following

set of equations:

H =H[soil] +H[veg] (1)

LE = LE[soil] +LE[veg] (2)15

Rn =Rn[soil] +Rn[veg] (3)

Rn[soil] =H[soil] +LE[soil] +G (4)

Rn =H +LE+G, (5)

where G is the ground heat flux and Rn is the net radiation. All fluxes are expressed in Wm−2. The H and LE fluxes

expressions are given in Shuttleworth and Wallace (1985, Eq. 6 and 7, p. 843) for a resistive scheme (following analogy with20

Ohm’s law) of a one-dimensional description of energy partition for sparse crops assuming horizontal uniformity. H and LE

expressions for the complete canopy between the level of mean canopy fow and reference height can then be written as:

H =−ρcp
raa

(Tx−T0) (6)

LE =− ρcp
raaγ

(ex− e0) (7)

Where γ is the psychrometric constant (mb K−1), raa the aerodynamic resistance between canopy source height and refer-25

ence level (s m−1), ex and e0 vapor pressure (mb) at canopy source height and reference height and Tx and T0 temperature
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(C) at canopy source height and at reference height. The components elements from soil and vegetation (LE[soil], LE[veg],

H[soil], and H[veg]) are expressed in the same way according to the associated resistances. Afterwards, the vapor pressure

deficit at the canopy source height is introduced. The system now becomes a set of five equations with six unknowns, namely:

vegetation temperature T[veg], soil temperature T[soil], canopy-space temperature T[canopy] and the corresponding water vapour

pressure e[veg], e[soil] and e[canopy]. The next steps of the classical solving of a two-source energy balance system are to express5

T[canopy] as a function of T[veg] and T[soil] thanks to the continuity equation in H and T[veg] as a function of T[soil] using the

energy budget of vegetation. In addition, the heat conduction flux in soilG is either estimated from net radiation (TSEB model)

or residual of the energy budget (SEtHyS model) as detailed in the appendix. The solving method consists in the linearization

of the equations of the previous system. The basic differences between approaches is that for SVATs models, soil temperatures

at different depths are prognostic variables tightly linked to water mass balance, whilst radiative temperature is a forcing input10

for the SEB models used to infer T[veg] and T[soil] as detailed below.

2.1.2 TSEB

The TSEB model is fully described in Norman et al. (1995). The solving principle is briefly described below. The TSEB model

relies on several assumptions and approximation to bypass the evaluation of the T[soil] prognostic variable. First, it is forced by

a radiometric surface temperature Trad so that soil and vegetation temperatures contribute to Trad in proportion to the fraction15

of the radiometer field of view (fθ) that is occupied by each component, thus adding a sixth equation to the system above:

Trad(θ) = [fθ ×Tn[veg] + (1− fθ)×Tn[soil]]1/n, (8)

where the factor n is usually fixed to 4 (Becker and Li, 1990). The available energy at the soil surface is computed considering

an exponential extinction of net radiation (i.e. Beer’s Law):

Rn[soil] =Rn× e−κ×LAI , (9)20

where the factor κ is set to 0.45 for spherical distribution of leaves following Roos (1991). The conduction flux in the soil is

expressed as a fraction of the available energy at the soil surface :

G= Γ×Rn[soil], (10)

with Γ an empirical coefficient taken as 0.35 (Choudhury et al., 1987). Finally, the resolution of this set of equations relies

on the (strong) assumption that, most of the time, vegetation transpires at a potential rate. The Priestley Taylor equation gives25

a first estimation of canopy transpiration (Norman et al., 1995, Eq. 12):

LE[veg] = αPT × fg ×
∆

∆ + γ
×Rn[veg], (11)
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where αPT is the Priestley Taylor parameter, fg the green vegetation fraction cover, ∆ the slope of the saturation vapor pressure

versus temperature curve and γ the psychrometric constant.

In the “series” resistance network used in this study (see justification below) described in Norman et al. (1995, Fig. 11), the

sensitive heat fluxes are expressed as:

H[soil] = ρcp
T[soil]−T[canopy]

rs
(12)5

between the soil surface and the canopy air space,

H[veg] = ρcp
T[veg]−T[canopy]

rx
(13)

between vegetation and canopy air space,

H = ρcp
T[canopy]−Ta

ra
(14)

between canopy air space and reference height for atmospherical measurements. Where rs, rx and ra are the associated10

resistances given respectively in (Norman et al., 1995, Eq. B.1, Eq. A.8, Eq. 6).

H[veg] is then computed as the residual of the vegetation energy balance (eq. 1). T[veg] is derived from H[veg]; T[soil] from

Eq. (8); H[soil] is computed from T[soil] and LE[soil] as a residual of the soil energy balance (Eq. 1). Should LE[soil] be found

negative, meaning that there is condensation on the soil surface, which is very unlikely during the day, then the assumption of

a vegetation transpiring at the potential rate is bypassed. LEsoil is set to zero and a new LE[veg] value is computed. Likewise,15

should LE[veg] be found negative, LE is set to zero. Further details on the resolution are given in French (2001, see his Fig. 2.6

p. 39). Compared to the initial formulation of the TSEB model (Norman et al., 1995), a more physically-based parameterization

for the divergence of Rn described in Kustas and Norman (1999) was adopted. In agreement with (Li and Kustas, 2005), the

“series” layout of resistance (Norman et al., 1995) was found to provide overall more accurate results (not shown) and also

less sensitivity to parameters uncertainty in the case of sparse canopy. Moreover, (Li and Kustas, 2005) have shown that20

the “parallel” resistance network was found to be more sensitive to errors in vegetation cover estimate. Finally, for model

comparison, it was also relevant that both resistance network were similar in TSEB and SEtHyS model. For these different

reasons, the “series” version of TSEB model was preferred to the “parallel” version in this study. The parameter sets used for

TSEB are summarized in Table 1.

2.1.3 SEtHyS25

The SEtHyS –French acronym for Suivi de l’Etat Hydrique des Sols or monitoring of the hydric condition of the soils– SVAT

model physics and the main parameterizations are described in Coudert et al. (2006). The main equations of SEtHyS are

summarized in appendix A. The model belongs to the “two sources, two layers” SVAT model category. Actually, the coupled
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Table 1. TSEB parameters (9) with reference values and optimal values obtained from sensitivity analyses.

Category Parameter Description [unit] Litterature Reference Optimal

range value value

Optical Asoil Soil albedo 0.05 – 0.35 0.15 0.14

properties Avegetation Vegetation albedo 0.10 – 0.30 0.3 0.3

Esoil Soil emissivity 0.94 – 0.97 - 0.94

Evegetation Vegetation emissivity 0.90 – 0.99 - 0.97

ε Surface emissivity, involved in CNR1 Ts conversion 0.96 – 0.99 - 0.96

Vegetation S Leaf size [m], involved in computing surface resistance - 0.01 0.01

characteristics αPT Priestley-Taylor coefficient, involved in estimating canopy

transpiration (Eq. 11)

1 – 2 1.26 1.3 – 1.5

Surface Γ Soil energy partition coefficient :G= Γ×Rn[soil] (Eq. 10) - 0.35 0.35

properties κ Coefficient of the exponential extinction of net radiation to

compute available energy at the soil surface (Eq. 9)

0.3 – 0.6 0.45 0.4

water and energy budget is solved for the vegetation and soil sources and the soil description for water and heat transfers

is based on the force-restore Deardorff formalism (Deardorff, 1978). The model requires atmospheric and radiative forcing

and surface biophysical parameters as inputs. It calculates the energy and water fluxes between surface and atmosphere and

simulates the evolution of soil and canopy temperatures, air temperature and specific humidity within the canopy, as well as

the surface and the root zone soil water content. The heat and water transfer calculation within the continuum soil-vegetation-5

atmosphere is based on a resistance concept. The resistance network is made of four nodes: the reference height for the low

atmospheric weather forcing; inside the vegetation at the displacement height plus the roughness length; just above ground

at the soil roughness length; and, at ground level. The aerodynamic resistances –above and inside vegetation canopy– are

determined with the wind speed profile description inside the canopy from Shuttleworth and Wallace (1985) and Lafleur and

Rouse (1990). The evapotranspiration calculation takes into account partition between free water in the canopy and the rest of10

the leaves (Monteith, 1965; Deardorff, 1978) and is based on the stomatal resistance for “big leaf” model from Collatz et al.

(1991). The vegetation photosynthesis and stomatal resistance parameterizations are the same as those used by the SiB model

(Sellers et al., 1996a). The soil hydrodynamic properties to calculate water transfer processes within the soil porous network

are given by Genuchten (1980). Ground heat flux conduction is obtained as the residual of the soil energy budget. Finally, the

radiative transfer model included in the model for TIR domain (François, 2002) allows simulating brightness temperature and15

6

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-295
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 17 September 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 2. SetHyS parameters (22) with initial uncertainty ranges used for MCIP calibration.

Category Parameter Description [unit] Initial uncertainty range

Optical Eg Bare soil emissivity 0.94 – 0.99

properties Asec Dry soil albedo 0.225 – 0.35

Ahum Wet soil albedo 0.1 – 0.22

Winf Moisture parameter for albedo calculation 0.15 – 0.29

Wsup Moisture parameter for albedo calculation 0.291 – 0.5

Asv Vegetation albedo 0.16 – 0.32

Vegetation Vmax0 Leaf photosynthetic capacity (Rubisco) [µmol m−2 s−1] 30 – 200

characteristics lgf Dimension of the leaf along the wind direction [m] 0.01 – 0.08

kwstr Empirical parameter for water stress calculation 0.01 – 0.1

Ground phc “Half critic” hydrologic potential [m] -200 – 100

properties Wmax Saturated soil water content [m3 m−3] 0.3 – 0.5

Wresid Residual soil water content [m3 m−3] 0.05 – 0.15

hV G Scale factor in the Van Genuchten retention curve model [m] -1.161 – 0.251

nV G Shape parameter in the Van Genuchten retention curve model 1.168 – 1.331

Ksat Saturated hydraulic conductivity [m s−1] 2.4× 10−8 – 2.7× 10−6

aElim Empirical parameter for limit evaporation 1 – 50

bElim Empirical parameter for limit evaporation 1 – 50

Ftherm Correction coefficient of the volumetric soil heat capacity [J m−3 K−1] 0.5 – 2

dp2 Root zone depth [mm] 200 – 2000

Initialization wg0 Initial soil surface water content [m3 m−3] -

variables w2 Initial root zone water content [m3 m−3] -

biasT2 Error in deep soil temperature [K] -2 – 2

radiative temperature, and thus gives the possibility of constraining the model with TIR data (Coudert and Ottlé, 2007; Coudert

et al., 2008). The SEtHyS model requires a set of about 22 parameters presented in Table 2.
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Figure 1. Experimental sites localization in France (left) and Morocco (right).

2.2 Sites description and data

All necessary data to run, calibrate and evaluate models was collected over 3 agricultural sites sampling 2 different climates

(temperate and semi-arid) and 7 cultures cycles from seedling to harvest (wheat Triticum aestivum L., sunflower Helianthus

annuus L. and corn Zea mays L.), which enable us to characterize all phenological states and contrasted weather forcing.

Table 3 summarizes existing cultures and climates per site. Auradé (43.55°N, 1.11°E) and Lamasquère (43.50°N, 1.24°E)5

experimental sites are located near Toulouse in south-western France and are part of the “SudOuest” project (Dedieu et al.,

2001; Béziat et al., 2009) led by CESBIO. Both experimental sites are under influence of temperate climate. They differ by

management practices (culture rotation and irrigation), soil properties and topography. Complete description of site features

and datasets are presented in Béziat et al. (2009). Sidi Rahal (31.67°N, 7.60°W) experimental site is located in the Haouz plain

in central Morocco and is part of the “Sud-Med” project (Chehbouni et al., 2008; Jarlan et al., 2015). It is part of an irrigated10

agricultural area under influence of a semi-arid climate. More information about site and dataset is given in Duchemin et al.

(2006). Geographical localization of experimental sites is shown in fig. 1.

Each experimental station collected standard meteorological data at a half-hourly time step intervals: Global incoming

shortwave and longwave radiation (Rg and Ra), wind speed (Ua), air temperature (Ta), atmospheric pressure (Pa), relative

humidity (Rh) and rainfall. The four components of the net radiation (Rn) were measured using a CNR1 radiometer (Kipp15

and Zonen, Delft, NL). Land surface temperature (LST) was computed from measured upward and downward long wave

components of the net radiation, using Stefan-Boltzmann’s law and an estimation of surface emissivity (Becker and Li, 1995).

Sensible (H) and latent (LE) heat fluxes were measured continuously using Eddy-Covariance (EC) systems (Moncrieff et al.,

1997; Aubinet et al., 2000). Fluxes were processed with classical EC filters and corrections (Béziat et al., 2009). Accuracy on

flux estimates is expected to range between 5 % and 30 % (Eugster et al., 1997; Wilson et al., 2002). Soil heat flux (G) was20

sampled using heat flux plates located at depths ranging from 5 cm to 1 m. Automatic measurements were then complemented

8
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by vegetation sample. Vegetation height (hc) and green Leaf Area Index (LAI) were collected periodically along crop cycles

and interpolated using Piecewise cubic Hermite algorithm. Green LAI was determined from destructive measurements with

a LiCor planimeter (LI3100, LiCor, Lincoln, NE, USA). In order to obtain estimation of fraction of green (fg), total LAI

(LAIgreen + LAIyellow) was extrapolated from green LAI data, applying a linear decrease starting at the LAI maximum and

ending at harvest with a value of LAItotal = 0.8×LAImax. In order to assess the potential loss of accuracy of meteorological5

inputs at the landscape scale and impact on model simulations, SAFRAN reanalysis data (Quintana-Seguí et al., 2008) are

used within this study. SAFRAN is based on an optimal interpolation between a background estimate obtained from Météo

France’s Numerical Weather Prediction Model (ALADIN) and weather station observations, except for precipitation relying on

the ground station network only and for the incoming radiation fluxes (downwelling surface shortwave and longwave) which

are computed from Ritter and Geleyn’s radiation scheme (1992) from the outputs of a numerical weather forecast model and10

the solar constant at the top of the atmosphere (for shortwave incoming radiation). Data was kindly provided by Météo-France.

2.3 Assessing the model skills

Specific periods of interests were identified to assess the model skills by phenological stages. These periods were chosen to

be 10-day long in order to catch synoptic scale variability of the weather, as shown by Eugster et al. (1997) with the help of

spectral analysis. This duration is also short enough to remain representative of a specific phenological stage. Four specific15

studied periods spread along each crop cycles were chosen: rising phase, growth phase, maximum development phase and

senescence. They were defined based on LAI thresholds and variations throughout the growth cycle. Starting days were

adjusted to optimize quantity and quality of data. In order to better assess the differences of model skills during stress periods,

water stress is quantified using two indicators:

– the Evaporation Stress (SE, Boulet et al., 2007) related to the ratio between real and potential evapotranspirations:20

SE = 1− LE

LEpot
, (15)

where LEpot was computed using the Penman-Monteith equation.

– the Soil Wetness Index (SWI, Douville, 1998, among others) of the root zone ranging from 0 at wilting point to 1 at

field capacity:

SWI =
W2−Wwilt

Wfc−Wwilt
, (16)25

with W2 the root zone water content, Wfc the water content at field capacity, and Wwilt the water content at wilting

point.

As cultures from our dataset are irrigated or in temperate areas, most stress periods are found during senescence phases, when

water resources are low or irrigation is stopped. The assessment of model skills is assessed through classical statistical metrics

including Root Mean Square Error (RMSE), Mean Absolute Percentage Deviation (MAPD), bias and determination coefficient30

r2.
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2.4 Models calibration strategy

The calibration is based on the large experimental data set of both instrumented sites in South West of France (Béziat et al.,

2009) and southeastern of Morocco (Chehbouni et al., 2008; Jarlan et al., 2015). The 22 parameters of the SEtHyS model were

calibrated for each crops and each phenological stages. The objective was not clearly to calibrate the model to fit the data at

best but rather to evaluate the sensitivity of model outputs to potentially poorly calibrated parameters when a spatial application5

of the modeling tool is sought. Four different cases corresponding to four different set of parameters are considered to quantify

the potential loss of performances due to wrong parameter values. The four cases are listed below from the “best” conditions

when the parameters are calibrated for each site, each crop and each phenological stage to the worst when generic values are

used:

1. Site and period specific parameters sets (hereafter named “optimal”) for each site, crop class and phenological stages10

(i.e. the calibrated values of Sect. 3.2.8). Note that the analysis of the model skills (Sect. 3.1) is performed using this

parameter set.

2. More generic parameter sets depending on crop class and phenological stages only (named hereafter “pheno+cult”)

3. If no information is available for characterizing phenology, a calibrated set of parameters for the whole cultural crop

cycle is computed (hereafter named “culture only”)15

4. The last case corresponds to the “optimal” parameter set but applied to another crop class in order to take into account

potential errors that are likely to occur when a land-use map is used (named “unadapted”).

What we consider the “best” case is very unlikely for a spatialized application of the tool because the largest the available

database, it will never cover all the conditions encountered at the scale of an heterogeneous agricultural landscape where

each plot will have its specific soil, technical itinerary, hydric status, etc... Our objective is thus to get different parameter20

sets with value close to what is expected for each type of conditions (crops, climate, sites, phenological stages...) but without

giving too much importance to the values themselves. To help perform the calibration, a stochastical multi-objective calibration

method (Multi-Objective Calibration Iterative Procedure or MCIP; Demarty et al., 2004, 2005) has been implemented in order

to minimize RMSE between simulations and measurements at half-hourly time intervals. Five target functions are identified

and minimized in the sense of Pareto for SEtHyS: H and LE fluxes, surface brightness temperature (Tb), net global radiation25

(Rn), and root zone soil water content (SWC). Considering its design based on remote sensing forcing, with less parameters,

the evaluation of TSEB performances (Sect. 3.1) is sought in its out-the-box configuration presented in Norman et al. (1995).

Nevertheless, a sensitivity analyse of the 3 parameters identified as the more sensitive for convection fluxes prediction by

several studies including Diarra et al. (2017) is performed to evaluate the potential improvement. These 3 parameters are the

Priestley Taylor coefficient αPT , κ the coefficient of net radiation extinction, and the empirical coefficient Γ relating Rn[soil]30

to G. Evaluation was performed for each parameter independently and with only two target functions (H and LE).
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3 Results

3.1 Models skills by crops and phenological stages

Model simulations of heat fluxes are compared to tower fluxes measurements at half-hourly and daily time steps, with a focus on

performance by crops and by growth stage. A specific paragraph in the discussion section is dedicated to the analysis of model’s

behavior during stress periods. RMSE’s for LE, H and Rn are displayed in Table 4 and MAPD’s for H and LE are displayed5

in Fig. 2. Biases (not shown) are very limited and ranged between -23 Wm−2 and +10 Wm−2 for both models, except during

the rising phase where they reach -47 Wm−2 and +43 Wm−2 for SEtHyS and TSEB, respectively (see discussion below).

Available energy is well simulated for both models with daily averaged RMSEs of 43 Wm−2 and 19 Wm−2 for TSEB and

SEtHyS, respectively. Regarding heat fluxes, Table 4 points out good performances of the TSEB model on daily averaged

values with regards to the relative simplicity of the approach compared to SEtHyS which relies on a systematic parameter10

11

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-295
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 17 September 2018
c© Author(s) 2018. CC BY 4.0 License.



calibration. Both models exhibit close statistics concerning LE estimations (RMSEs of 35.5 vs 38.9 Wm−2 for SEtHyS and

TSEB, respectively) while TSEB behaves slightly better regardingH estimations (21.2 vs 28.7Wm−2). These values are close

to errors found in the literature for TSEB (Norman et al., 1995; Zhan et al., 1996; Anderson et al., 1997; Kustas and Norman,

1999; French et al., 2005; Kalma et al., 2008; Diarra et al., 2013, 2017) and also within the range of expected errors from

EC towers measurements (Eugster et al., 1997; Wilson et al., 2002). Half-hourly values lead to similar conclusions, except5

that the drop in retrieved LE’s performance associated to this change of reference time interval is stronger for TSEB than

for SEtHyS. Interestingly enough, this first analysis hides important disparities in terms of LE prediction skills between the

various growth stages. Indeed, Fig. 2 highlights some regularity in the SEtHyS skills regardless of growth stages and crops,

as evidenced by the narrow group formed by the SEtHyS points. By contrast, the range of MAPD values for TSEB is much

wider. In particular, limitations of the model are clearly emphasized during rising and senescence stages. During the senescence10

phase, these discrepancies may both be attributed to stress (see discussion below) but could be related also to a poor partition

of available energy between soil and vegetation. Indeed, the change in the radiative features of the canopy, including albedo,

which occurs on senescent plants, is not taken into account by the model.

The poor performance during the rising stage is due to excessive limitation of the soil sensible heat flux, induced by the

parameterization of the roughness length for momentum (Z0m= hc/8) at the denominator of the expression of the aerody-15

namic resistance ra, leading to very high resistance when canopy height is very low. Since, during that stage, the vegetation net

radiation is very limited, vegetation sensible heat is also close to 0. The observed high MAPD of LE during the rising phase

shall thus be attributed to significant bias of TSEB estimates. To a lesser extent, SEtHyS skills are also mitigated during the

rising phase. Generally, when evaporation is predominant over transpiration, more weight is given to soil transfer processes

which are harder to characterize, considering the high heterogeneity of soil characteristics and the limited soil measurements20

available for calibration. The poor performances are more conspicuous with TSEB leading to estimation of H with a MAPD

of 85 %. By contrast, both models tend to have better performance when vegetation is fully-developed (MAPD less than 23

% for LE). The model performance by crop and growth stage is detailed in Fig. 3 (a) and (b), respectively, as normalized

Taylor diagrams (Taylor, 2001). This diagram is a concise way to display the ratio between the variances of the model outputs

and the observed data, the correlation coefficient r and the RMSE between model estimates and observations normalized by25

the variance of the observed data set. The further from the point marked “observed reference” on the abscissa axis, the higher

the normalized RMSE; likewise, dots on the right (left) side of the circle cutting the ordinate axis at “observed reference”

overestimates (underestimates) the observation variance. Figures 3 (a) and (b) point out higher normalized standard deviations

for TSEB LE estimations. These noisier outputs are likely due to the instantaneous (“snapshot”) computing architecture of

the model, while SEtHyS is better constrained by its continuous evolution of the soil water content which lead to smoother30

predictions of the daily cycle. This explains the drastic drops of TSEB RMSE on LE when going from daily to half-hourly

observations already underlined above. Finally, no significant skill differences are observed between crops, which seems to in-

dicate that (1) the set of parameters used in TSEB describes well vegetation characteristics and that (2) the SEtHyS formalism

can be adapted to various crops, provided that parameters are properly calibrated. More focus on the selected sets of param-

eters is given in the discussion section. Models performs well in both climate: SEtHyS showed slightly better performances35
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for flux estimates in France (MAPD for LE of 23 % in France and 30 % in Morocco), whereas TSEB showed slightly better

performances for flux estimates in Morocco (MAPD for LE of 26 % in France and 18 % in Morocco). However, differences

in crop management between France and Morocco and the availability of only one crop cycle in Morocco does not allows to

draw final conclusions about climate impact on model skills. TSEB has low performances on senescence periods (including

hydric stress) for LE estimation (MAPD of 45 %). This is partly due to Priestley-Taylor approximation which is suitable for5

unstressed vegetation in potential conditions (Priestley and Taylor, 1972). The other reason is also that it does not have water

budget description. Increased LST resulting from water stress does not allow limiting LE significantly enough in the TSEB

scheme (see Sect. 3.2.7). Several authors have already pointed out that TSEB do not faithfully reproduce periods of senescence

and water stress (Kustas et al., 2003; Crow et al., 2008; Boulet et al., 2015). SEtHyS includes description of soil water transfers

and leaf processes –in particular stomatal resistance– and can better reproduce hydric stress impact on LE flux (MAPD of 2810

%).

3.2 Sensitivity analyses to inputs and parameters

3.2.1 Overview

Given the overall purpose of our research dedicated to the spatialized estimation of evapotranspiration at various scales, quan-

tifying the decrease of model performance due to deterioration of input data quality combined with change of spatial scale15

from the field to a heterogeneous agricultural landscape is a prerequisite. The specific purpose of this section is twofold: (1)

identify the most sensitive inputs and parameters and (2) quantify the expected model performances when realistic input errors

are introduced. Uncertainties on input variables have been evaluated by comparing available in situ data to the spatialized

datasets (SAFRAN meteorological reanalysis and ASTER, LANDSAT, FORMOSAT2 satellite imagery and products). Results

are presented on Table 1 and details are given in the following sections.20

3.2.2 Intercomparison of SAFRAN and in situ meteorological data

Comparison results between the 2 available meteorological stations in the South-West France and the closest SAFRAN 8-kms

grid points (inverse interpolated distance) are reported in Table 5 in terms of RMSE and biases (2006–2008 period). On average,

SAFRAN behaves pretty well for air temperature and relative humidity with reasonable RMSE and biases close to 0. To a lesser

extent, wind speed is also well reproduced although slightly biased. The SAFRAN ability to predict incoming radiation is less25

convincing: bias is low but RMSE reaches 90 Wm−2 (about 20 % on average). This comparison corroborates the conclusions

of Quintana-Seguí et al. (2008) who also highlight a strong weakness of SAFRAN in terms of incoming radiation predictions.

Er-Raki et al. (2010) used a forecast model (ALADIN from Météo-France) over the Tensift basin of Morocco. The results

showed that the ALADIN forecasts are in good agreement with the station measurements in terms of solar radiation (Rg) and

air temperature (Ta). However, the comparison of the station and the forecasted values of relative humidity (Rh) and wind30

speed (Ua) are much more scattered. Besides the RMSE and biases representing time averaged statistical characteristics of the

difference between SAFRAN and the two ground stations, it is also interesting to consider more extreme error values. To do so,
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Figure 3. Taylor diagram for LE performances of TSEB (hollow markers) and SEtHyS (plain markers), for various cultures (a) and phe-

nological stages (b). Concentric lines centered on 0 indicate the normalized standard deviation with observations, radial lines indicate the

correlation coefficient between simulations and observations, normalized RMSE isolines are the concentric circles centered on “r” (reference

for the overall time series of observations: RSME=0, corr. coeff.=1 and NSD=1).

the 1st and 9th deciles of the difference distribution are shown in Table 5 in absolute values and in percentage. The probability

of occurrence of such errors is far from insignificant as 20 % of the data are involved. These “extreme” errors are considered

below for the sensitivity study regarding (1) the instantaneous estimates provided by the TSEB model depending on satellite
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overpass time, leading to potential instantaneous errors much higher than the average; (2) the poorest quality of re-analysis

data in the semi-arid areas because the meteorological station network may be scarcer.

3.2.3 Sensitivity analysis to meteorological inputs

Impact of these realistic and more extreme errors on convection fluxes simulations are shown in Fig. 4 and Fig. 5, respectively.

We will hereafter focus on noise since biases are often limited on re-analysis systems thanks to a system of bias reduction.5

On average, SEtHyS simulations are less sensitive to noisy inputs for LE than for H , whereas reverse conclusions can be

drawn for TSEB. Except for wind speed, adding noise to meteorological inputs has almost no impact on SEtHyS latent heat

predictions, while noise added to incoming radiation and, to a lesser extent, air temperature, deteriorates TSEB predictions

with RMSE of LE simulations lowering from reference value of 55 Wm−2 to nearly 60 Wm−2. Indeed, whereas the partition

between latent and sensible fluxes is moderated by the slow-varying soil moisture content in SEtHyS, TSEB partition relies10

on measured available energy and surface temperature inputs only. By contrast, noisier wind speed, air temperature and, to a

lesser extent, solar radiation, deteriorate significantly sensible heat for SEtHyS. TSEB appears, on average, less sensitive to

noisy meteorological inputs for H . When considering extreme errors (Fig. 5) on meteorological forcing, the same variables

are identified as the most sensitive ones: Ra, Rg and Ta for TSEB and Ra, Rg and Rh for SEtHyS. However, whilst SEtHyS

performance remains acceptable despite these high errors on forcing, TSEB performance for both LE and H collapse in15

response to incoming radiation errors in particular. Interestingly enough, incoming solar radiation can also be retrieved from

satellite measurements such as MSG. In particular, a recent study by Carrer et al. (2012) points out a significant improvement

of MSG derived short wave and long wave downwelling surface radiation with regards to the SAFRAN analysis system. This

could represent a valuable alternative for regional assessment of evapotranspiration, particularly for the TSEB model. As a

conclusion, the SEtHyS model appears more stable to uncertain meteorological inputs than TSEB on average, at least for latent20

heat flux predictions.

3.2.4 Sensitivity analysis to vegetation forcing inputs

Focus here is put on evaluating the bias effect on SEtHyS and TSEB flux predictions. Indeed, on one hand, errors on vegetation

characteristics are much more difficult to evaluate as in situ measurements are time-consuming and therefore not always

available at a small time interval. On the other hand, biases on satellite estimates are more likely to occur than white errors25

because of a detection limit of visible sensors in the case of sparse vegetation and a possible saturation effect when Leaf Area

Index is above 3 m2 m−2. On average, Claverie et al. (2011, 2012) highlight a potential bias of 20 % for LAI estimated from

FORMOSAT data. Canopy height (hc) is not available directly from remote sensing data but can be estimated from LAI .

Canopy height (hc) was deduced from LAI = f(hc) relations, applying linear regression to each culture and phenological

stage available in our in situ data. This methodology provides estimations of hc with a MAPD of 30 %, and “extreme” bias up30

to 100 % (Bigeard, 2014). The results shown in Fig. 5 demonstrate that TSEB and SEtHyS sensitivity to bias on LAI remains

limited. By contrast, TSEB and, to a lesser extent SEtHyS, exhibit a much higher sensitivity to bias on canopy height (hc) due

to erratic transfer resistances when hc is too close to the height of the micrometeorological measurements. As LE is computed
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from the residual of the energy budget in TSEB, a problem is observed on both H and LE fluxes, while LE is less affected in

SEtHyS (not shown).
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3.2.5 Sensitivity analysis to radiative temperature for TSEB

The comparison between in situ LST measurements and retrieval from the LANDSAT7 and ASTER images yielded a maximum

absolute difference of 2.2 K (4 points) in agreement with values reported in the literature ranging from 1 to 3°C (Hall et al.,

1992; Gillespie et al., 1998; Schmetz et al., 2002; Peres and DaCamara, 2004; Li, 2004; Liu et al., 2006; Wan, 2008, among

others). As LST is expected to be a determining input of TSEB, an in-depth sensitivity analysis to this variable was carried out5

considering white noise and biases of 1, 2 and 3°C. Indeed, the spatial scale mismatch between the spatial sensor operating,

at best, at 90m resolution and the SVAT model operating at the scale of an “agricultural unit” (potentially lower than a parcel)

is likely to be important. Regarding the strong heterogeneity of agricultural landscape (in terms of crops, development stage,

irrigation, hydric stress, etc.), bias is also likely to be important and quite impossible to correct. The results of adding errors to

measured radiative temperature on TSEB fluxes prediction are shown in Fig. 6. For limited white noise up to 2 K, the drop of10

TSEB skills is small on both H and LE. By contrast, biases are much more impacting. In particular, a negative bias of 3 K

could deteriorate LE RMSE from 58 Wm−2 to 78 Wm−2. Interestingly enough, a negative bias, that is likely to occur when

the observed pixel is partly irrigated (i.e. cold), while the agricultural unit studied lay under stress (i.e. hot) for instance, has a

stronger effect than a positive bias. This is likely to occur in many cases in practice: a mixed pixel including forest and stressed

field, irrigation heterogeneity within a pixel (for instance in progress irrigation within a field including gravity or center pivot15

system or the use of a localized sprinkler).

3.2.6 Sensitivity analysis to water inputs and soil water content for SEtHyS

Water inputs include rainfall and irrigation over agricultural landscape and both are difficult to assess accurately as long as the

considered spatial scale exceeds one km2. Even in this case, a good knowledge of irrigation input at the field level requires

costly field surveys, since farmers’ associations or regional office responsible for irrigation water often work at a larger scale20

made of several plots. In addition to this potential uncertainty, the initial condition of soil water content (SWC) should also be

considered uncertain as a result, for instance, from errors piling up from previous inputs. Figure 7 shows results of sensitivity
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analysis to these three factors: uncertainty on irrigation amount and timing and on SWC initial condition. Unsurprisingly, all

factors had a significant impact on LE predictions. Even if input timing was correct, a bias of 1mm with correct initial SWC

deteriorated the SEtHyS skill by 5 %. If the bias on input reaches 10mm and the initial SWC is negatively biased with the

same level, the loss of model performance is above 25 %. Considering that the total amount of an irrigation round can reach

100mm, a 10mm uncertainty is very likely to occur in practice. In addition, a negative bias on SWC impacts significantly more5

LE predictions than a positive bias. Indeed, going towards drier conditions may lead to stress and, as a consequence, to a

drastic drop of predicted LE compared to reference, whereas increasing SWC when the surface is already close to potential

conditions won’t have any effect on LE. Within this context, data assimilation of surface soil moisture retrieved from spatial

sensors could provide an interesting solution to improve accuracy of SWC initial conditions (Prevot et al., 1984; Demarty

et al., 2005; Li et al., 2006). By contrast, the timing, although important, has a secondary influence on model skills. Even when10

water input is applied 3 days before or after the actual date, the loss of LE predictions skills remain limited at around 15

%. Indeed, considering that agricultural landscape is often well-watered in order to maximize production, vegetation is able,

through transpiration processes, to maintain high levels of LE during long periods. The resulting dynamics of LE is relatively

smooth compared to bare soil that is dominated by evaporation processes. Finally, the main conclusion is that emphasis should

be laid on a water amount prescription whilst timing appears of secondary importance.15

3.2.7 Cross sensitivity analyses of models through linkage of radiative temperature and SWC

Sensitivity of the TSEB and SEtHyS models to surface water status has to be detailed in order to compare how the models

respond to a change in water conditions. The difficulty lies in the conceptual difference between both models: surface water

status is an explicit variable state for SEtHyS while, in the TSEB model, surface radiative temperature is an indirect proxy of the

surface hydric conditions. For the set of simulation periods considered in this study, initial soil water contents (for surface and20

root zone) were biased in SEtHyS inputs with +/-10, +/-30 or +/-50 % levels. As a consequence, the simulated radiative surface

temperature by SEtHyS diverges from reference and the differences between both temperatures simulations time-series are

added to the TSEB model input radiative temperature as an equivalent water bias converted in temperature. It is assumed that

the SEtHyS model, used with a calibrated set of parameters, is able to simulate a realistic temperature equivalent to the water

status biases (Coudert et al., 2006; Coudert and Ottlé, 2007). Figure 8 shows the average variation of the temperature bias as a25

function of the SWC bias. As expected, temperature increases with water content deficit. Beyond the [-10 % – +10 %] interval,

temperature and water contents biases evolve quasi linearly with a greater increment for dry conditions. On the contrary, one

can expect a more rapid limitation in temperature decrease with wet conditions, when soil reaches field capacity or saturation.

The consequence on evapotranspiration deviation from reference clearly shows that beyond the [-10 % – +10 %] interval for

water content biases, the error increases also linearly with a greater increment for dry conditions. Under -20 % bias, the impact30

on LE flux exceeds 50 Wm−2. This result is important for our purpose to spatialize models for evapotranspiration estimates,

because accurate root zone and surface water content retrievals from thermal and microwave remote sensing are a real challenge

over heterogeneous landscapes (Barrett and Renzullo, 2009; Hain et al., 2011). The shift in temperature simulated by SEtHyS

for -50 to +50 % water contents biases does not exceed 2 K and lay therefore within the typical remotely sensed surface
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temperature uncertainty range. For such a temperature bias, the TSEB model evapotranspiration divergence is lower than 40

Wm−2. As a consequence, compared to the SEtHyS model, TSEB is less “reactive” to soil water contents variation. The result

is critical for dry or stress conditions as previously pointed out. Actually, water status is only taken into account in the TSEB

model through the surface temperature which is not sufficient and no additional limitation of surface evapotranspiration is done

by modulating for instance the Priestley Taylor parameter.5

3.2.8 Main results of parameters sensitivity analysis and calibration before landscape spatial distribution

The results of the parameters sensitivity analysis and calibration for each time period are described in parallel for both models

and may be summarized as follows:

– The Vmax0 values of the SEtHyS model are different for wheat (with 110 < Vmax0 < 140 µmol m−2 s−1) and for

sunflower and corn (65 < Vmax0 < 100 µmol m−2 s−1) at every time period on the french worksite. The SEtHyS10
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photosynthesis module was taken from the SiB2 model (Sellers et al., 1996b). Sellers et al. (1996b) suggested a value of

100 µmol m−2 s−1 for the “agriculture biome” land-cover class that is in-between our calibrated values. This means that

the photosynthesis assimilation rate has to be enhanced for the wheat class in order to match the set of target variables

(H , LE,w2,Rn, aRg). This result is consistent with the higher optimal value also obtained for the TSEB αPT parameter

(Priestley and Taylor, 1972; Norman et al., 1995) for wheat ('1.5) than for corn and sunflower ('1.35). A more detailed5

discussion about this parameter is carried out in the following section. Measurement of photosynthesis assimilation rate

and stomatal conductance were carried out over wheat, corn and sunflower crops with a Licor 6400 gas analyzer in 2010

within the framework of the “SudOuest” project. Optimal values deduced from measurements for the Vmax0 parameter

(not shown) are in perfect agreement with the previous calibration results, except for sunflower. We should suspect

overestimated model inputs of LAI based on destructive measurements due to the sunflower heterogeneity at field scale,10

leading to Vmax0 parameter values that are lower with calibration than expected with measurements.

– The calibrated soil characteristics of the SEtHyS model (Wresid and Wmax) closely follow the type of soil identified at

the various experimental sites. Wmax parameter is lower for Auradé than for Lamasquère because of lower clay content,

but a noticeable evolution are found with plant growth. Wmax is high or maximal at plant emergence or early growth

especially for wheat and then decrease with plants growth and associated soil compaction. Similarly, the Wresid soil15

parameter, in particular for sunflower, gradually increases from plant emergence (0.07m3 m−3) to maximal growth (0.14

m3 m−3) and then decreases with senescence (0.08 m3 m−3). As a consequence, Wmax-Wresid decreases with plant

growth. Calibration results for root zone depth dp2 show that values obtained during emergence or early growth are higher

than expected, except for wheat crop in Morocco. This means that, from a model calibration point of view, available water
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storage capacity (depending on Wmax-Wresid and dp2) is not limiting for French sites during the beginning of the crop

cycle, but it becomes a constraint when water deficit grows between spring and summer. The hydraulic conductivity at

saturation Ksat, exhibits also the lowest values (< 2.10-7 .s−1) for the Lamasquère site with higher clay content and

lower sand content (Genuchten, 1980), compared to Auradé and Morocco sites. For all sites the Ksat minimal values are

reached during plant emergence stages and generally increase during growing periods. This result is also consistent with5

the root system development favoring the vertical soil water transfers.

– The Ftherm parameter is a correction coefficient of the volumetric soil heat capacity which allows limiting the ground

heat conduction flux in the “force-restore” soil system. This parameter is one of the most influential parameters of

the SEtHyS model. For all sites, Ftherm is high with 1.5 to 1.7 values for plant emergence and early growth and then

decreases as vegetation grows to its maximal stage of development, to reach its lowest value (nearly 1). This result is also10

consistent with the development of the root system which grows in the upper soil horizon at plant emergence, increasing

the soil porosity in agreement with the result obtained for the Wmax parameter. Then, the soil compacts, which leads

to lower porosity and higher heat capacity. A similar result is obtained with the TSEB model. Choudhury et al. (1987)

proposed a value of 0.35 for the Γ parameter (see Eq. 10) while higher values ('0.5) gives better results after calibration

at maximal vegetation development periods, increasing heat conduction flux in the soil (see Fig. 9 (a)). The impact on15

the H and LE convective flux is nevertheless fairly low (less than 5 Wm−2 for averaged RMSE).

– Finally, the default value of 0.45 for κ, the coefficient of the exponential extinction of net radiation to compute Rn[soil]

(Eq. 9), appears generally acceptable for H and LE predictions except for sunflower (see Fig. 9 (b)). Indeed, as far as

sunflower is concerned, the hypothesis of spherical leaf angles distribution is less relevant even for the simple radiative

transfer model included in the models, based on a turbid description of the canopy. A value close to 0.65 is more optimal20

according to calibration, especially for periods around maximal LAI . Such higher value reduce the net radiation in the

soil (Rn[soil] in Eq. 9).

– Concerning climate differences between French and Moroccan sites, both models exhibit a coherent trend to limit evapo-

transpiration over the semi-arid site. For TSEB, this is achieved by lowering the αPT parameter (wheat optimal value of

1.25 for Morocco against 1.6 for France) which directly influence the evapotranspiration rate, while SEtHyS represents25

this limitation by lowering the photosynthesis activity, which is controled thru Vmax0 parameter (optimal values between

40 and 70 µmol m−2 s−1).

– The temporal evolution of the surface albedo retrieved by calibration is also interesting. As vegetation grows, the cal-

ibration results show a slight increase of the vegetation layer albedo and a decrease just after senescence phase before

harvest. Around maximal LAI , winter wheat albedo for the French sites obtained from calibration ('0.3) is slightly30

higher than sunflower or corn albedos ('0.25). Despite these overestimated values, the experimental and bibliographical

values (0.22–0.23), tends to corroborate the experimental observations of daily mean albedo based on Plant Area Index

presented by Ferlicoq et al. (2013).
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Figure 9. Sensitivity analyses of Γ (a), κ (b) and αPT (c) TSEB parameters during vegetation periods. Error was computed as a cost function

(euclidian distance) taking into account MAPD of LE and H simultaneously: Error =
√
MAPD2

[LE] +MAPD2
[H].
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4 Discussion

4.1 Influence of the parameters sets for model spatialization

The four calibration cases for the SEtHyS model going from site and period specific to more generic parameters from the

literature are considered in order to evaluate the potential loss of model performance when specific calibration is not possible

by lack of data. Figure 6 shows the impact of the parameter set used on the SEtHyS performance to predict LE fluxes. Global5

results (for all crop classes and the whole cultural cycles) corresponding to the label “overview” in Fig. 6 give a MAPD of 30

% for the generic “culture only” set of parameters. This result does not differ much from the performance obtained with more

specific sets of parameters “pheno+cult” or “optimal” giving 25 % and 23 % of MAPD, respectively. However, when a set of

parameters from another crop class is used, MAPD reaches 58 %. A finest analysis by phenological stages indicates an overall

stability of the results with the “pheno+cult” parameter set with regards to “culture only”. There are actually two exceptions:10

one for the vegetation senescence periods which require specifics parameter sets. A mean set of parameters for the crop class

increases MAPD from 30 % to 40 %. The second relates to crop rising periods. A generic one based only on the crop class

(“culture only”) increases MAPD up to 50 % compared to 45 % for “pheno+cult” when taking into account the phenology. As

a conclusion, a mean parameter set associated to a specific crop without considering phenology implies only a slight decrease

of the performance for growth or maximum vegetation development. By contrast, the relevance of the parameter sets becomes15

noticeable when specific information is not available for rising and senescence periods (including potentially water stress

phases). With the same purpose, a specific analysis is dedicated to the Priestley-Taylor αPT key parameter of the TSEB model

in the next section.
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4.2 A deeper look at the αP T parameter for spatialization

A first estimation of LEvegetation canopy transpiration flux is obtained from the Priestley-Taylor approximation and depends

on the fraction of green fg and on the αPT parameter. Most studies (Norman et al., 1995; Kustas and Norman, 1999; French

et al., 2003; Anderson et al., 1997, 2008; Li et al., 2006, 2008, among others) have usually used a αPT value of about 1.3

for semiarid or sub-humid agricultural areas. However, this value may vary with vegetation type as mentioned in Norman5

et al. (1995), low values of LAI , atmospheric demand (Anderson et al., 2008; Agam et al., 2010; P. D. Colaizzi, N. Agam, J.

A. Tolk, S. R. Evett, T. A. Howell and S. A. O’Shaughnessy, W. P. Kustas, 2014) or dry air advection conditions (Kustas and

Norman, 1999). As a first step, the calibration is performed for midday time interval series over various surface and atmospheric

conditions in order to be compared with previous studies using TSEB instantaneously for water flux mapping purpose when

thermal imagery is available. Figure 9 (c) shows the influence of αPT values onH and LE fluxes for wheat, corn and sunflower10

crops over the sites in both the South West of France and Morocco. Optimal values for irrigated wheat in Morocco (semi-arid

climate) and sunflower in the South-West of France (temperate climate) are close to the 1.3 bibliographical value. For wheat

and irrigated corn in South-West of France, mean optimal values are higher and reach 1.6 for wheat. Mean optimal value of 1.5

is obtained for temperate climate, while a lower value of 1.25 is obtained for semi-arid climate. In a second step, the half-hourly

data are used for the calibration in order to study the diurnal cycle of the αPT parameter. The αPT parameter shows a U-shape15

diurnal cycle evolution as displayed in Fig. 11 with smaller values around midday time, and higher values in both morning

and evening when stability conditions are changing, enhancing LEvegetation transpiration canopy flux. This is particularly

outlined under clear sky conditions, when TIR data from space is most likely to be collected. The original αPT parameter is

defined for a system at equilibrium with constant temperature, a condition which is particularly not met in the morning and

in the evening when temperature temporal gradients are the highest. As a consequence, such variations integrated over the20

diurnal cycle lead to slightly higher αPT fixed optimal values for daily half-hourly time interval simulations. Moreover, results

indicate a decrease of RMSE by about 10 % on both H and LE fluxes when optimal values at the original time interval are

used instead of a fixed daily average. Nevertheless, as more mistakes on fluxes estimation are likely to be made around midday

time, when turbulent fluxes are maximal, optimal daily value of αPT tends towards its value around mid-day and is not much

affected by increased morning and evening values. Despite thermal imagery from space is not available with the presence of25

clouds, the emergence of drone acquisition makes interesting the characterization of αPT under those conditions. On cloudy

days, Fig. 11 hilights that fixed daily optimal values of 1.8 to 2 (higher instantaneously) are required for optimizing H and LE

fluxes enhancing again the LEvegetation transpiration flux for such reduced atmospheric demand. Hence, for simulation under

cloudy conditions, values can be raised by +0.4 in a view to interpolate time series between satellite overpass or to run TSEB

model with in situ or low altitude aircraft remotely sensed surface temperature. An improvement of about 10 % on LE flux30

simulation is likely to be expected when taking into account the above-mentioned impact of vegetation and cloudy conditions

considerations on αPT parameter retrieval. However, recently, P. D. Colaizzi, N. Agam, J. A. Tolk, S. R. Evett, T. A. Howell

and S. A. O’Shaughnessy, W. P. Kustas (2014) remembered that larger αPT values did not mitigate the discrepancies on the

evaporation (E) and transpiration (T) components of the total latent heat flux (ET). These authors have proposed a revised
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version of TSEB replacing the Priestley-Taylor formulation with the Penman-Monteith equation in order to better account for

large variations of vapor water pressure deficits and correct the evaporation, transpiration and total LE simulations. Boulet

et al. (2015), thus built the SPARSE model based on Penman-Monteith with satisfying performances with the Morocco wheat

site dataset, above those of TSEB with default parameter values.

5 Conclusions5

This study aimed at comparing a “complex” SVAT model with the instantaneous energy balance model TSEB with the objective

to map distributed evapotranspiration on agricultural landscapes at different resolutions. This study focused specifically on the

comparison of the TSEB model (Norman et al., 1995) with the SEtHyS SVAT model (as described in Coudert et al., 2006) with

two main objectives: (1) the accuracy assessment through the comparison of model predictions to a large in situ database; (2)

a comprehensive sensitivity analysis to uncertainties in inputs and parameters of both models potentially induced by landscape10

spatialization. The main results of the study can be summarized as follows: Both models give close statistics on daily average

LE (RMSEs of 36 vs 39 Wm−2 for SEtHyS and TSEB, respectively) while TSEB behaves slightly better regarding H

estimations (21 vs 29Wm−2). This points out remarkable performance of the TSEB model compared to the relative simplicity

of the approach, all the more given that SEtHyS parameters are calibrated for each cases considered (crop, phenology and site).

Nevertheless, SEtHyS skills appear more stable regardless of growth stages and crops whilst limitations of the TSEB model15

are clearly emphasized during rising and senescence stages. SEtHyS simulations are also less sensitive to noisy meteorological

inputs for LE than TSEB, for which performance are significantly deteriorated by noise on meteorological data, in particular

for the incoming radiation. Indeed, the partition between latent and sensible fluxes is moderated by the slow-varying soil

moisture content in SEtHyS, while the TSEB partition relies on measured available energy and surface temperature inputs
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only. When considering extreme but likely errors on meteorological forcing, TSEB skills for both LE and H explode (still in

response to incoming radiation errors in particular). TSEB and SEtHyS sensitivity to bias on LAI remains limited, but TSEB

exhibits a much higher sensitivity to bias on canopy height (hc) which is due to erratic transfer resistances when h is too close

to the height of the micrometeorological measurements. The sensitivity analysis on surface temperature which is one of the

more important inputs for TSEB shows that for a limited white noise up to 2 K, drop of TSEB skills is small on both H and5

LE. By contrast, biases are much more impacting as a negative bias of 3 K could deteriorate LE RMSE from 58 Wm−2 to

78 Wm−2. Similarly, the sensitivity of SEtHyS skills to uncertain water inputs and initial soil water content, specific inputs of

the SEtHyS model, has also been analyzed separately. We show that emphasis should be laid on water amount retrieval whilst

timing of water supply appears of secondary importance; in particular a 10mm negative bias on input coupled to a negatively

biased initial SWC of 10 % with the same level, lead to a the loss of model performance above 25 %. A cross sensitivity10

analysis of the TSEB and SEtHyS models to surface water status was carried out as follows: several surface temperature time

series are simulated by SEtHyS with initial soil water contents bias by +/-10, +/-30 or +/-50 %. The difference of surface

temperature compared to a reference simulation is added as input to the TSEB model as an equivalent water bias converted

in temperature. The shift in temperature simulated by SEtHyS for -50 to 50 % water contents biases does not exceed 2 K

and is therefore within the typical remotely sensed surface temperature uncertainty range. For such a temperature bias, the15

TSEB model evapotranspiration divergence is lower than 20 Wm−2 while it reaches 50 Wm−2 for SEtHyS. As a conclusion,

TSEB is less “reactive” to soil water contents variation than the SEtHyS model. The sensitivity analysis and calibration study

of the models for various crop, phenology, surface conditions and atmospheric forcing combinations can be used as a learning

basis for model spatial distribution at the landscape scale of a small region. After checking that calibrated parameters are

consistent with biophysical processes governing the hydrological functioning of the studied crops, several parameters sets for20

both models are considered, from site-specific, crop and phenology to average set for one crop, and skill losses have been

evaluated. We show that an average parameter sets for a specific crop, without considering phenology, implies only a slight

decrease of the performance of SEtHyS for growth and maximum vegetation development stages. By contrast, the relevance of

the parameters sets becomes noticeable when specific information is not available for rising and senescence periods (including

potentially water stress periods). For TSEB, the most sensitive parameter is the Priestley-Taylor coefficient αPT . Higher values25

than the literature have been highlighted in this study, in particular for cloudy conditions: optimal values range from 1.3 to

1.6. In addition, a more in-depth analysis points out a "U-shaped" diurnal cycle evolution of this parameter, with smaller

values around midday time and higher values in the morning and the evening. This is particularly outlined under clear sky

conditions. As a conclusion, this result completes the study of Crow et al. (2005) comparing TSEB spatialized fluxes with the

TOPLATS SVAT simulations (Famiglietti and Wood, 1994; Peters-Lidard et al., 1997), giving an edge to the use of TSEB when30

models are spatially distributed with necessary sparse or uncertain observations (rainfall, soil characteristics, etc...). The overall

performance of the TSEB model are particularly remarkable considering the lower number of parameters and, in particular,

that there is no need for water input knowledge compared to a more complex SVAT model. Nevertheless, the more in-depth

sensitivity analysis points out specific conditions when performance can be very poor: during emergence and senescence phase,

and when incoming solar radiation is of bad quality. SEtHyS appears much more stable with regards to uncertain inputs but35
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require a larger number of parameters. This study lays the foundation for the spatialized application of both models at different

resolutions, when thermal infrared data are available for ETR estimation purposes. Based on this study, our further work deals

with 1) developing a methodology taking advantage of remote sensing spatial surface temperature contrasts at landscape scale

for different resolutions and 2) better documenting crop phenological cycles with multi-sources radar data (Fieuzal et al., 2012,

2013) in the SEtHyS model landscape spatialization. The first perspective is carried out within the frame of the preparation of5

the future TRISHNA mission of the French space agency (CNES) and the Indian Space Research Organization (ISRO), and

the second one will take advantage of the recent SENTINEL Mission of the European Space Agency (ESA).

Data availability. Data access from the French and the Moroccan sites must be requested to the head of the Sud-Ouest observatory (Tiphaine

Tallec, CESBIO, France) and to the head of the TENSIFT observatory (Jamal Ezzahar, UCAM, Morocco). The SAFRAN data should be

directly requested to the head of Météo-France (Toulouse, France).10

Appendix A: SEtHyS main equations

This section presents the governing equations for the SEtHyS SVAT model variables.

A1 Basical set of equations for the SEtHyS model

The mass and energy budget is solved jointly for both soil and vegetation sources from the following system:





Rn[soil] =H[soil] +LE[soil] +G

Rn[veg] =H[veg] +LE[veg]

H =H[veg] +H[soil]

E = E[veg] +E[soil],

(A1)15

where Rn[soil] and Rn[veg] are net radiations at soil and vegetation levels and G is the soil heat flux. Parameterization of the

soil behavior is based on Deardorff’s formalism (1978). The soil surface temperature T[soil], the vegetation temperature T[veg],

the air temperature inside the canopy T[canopy] and the air humidity inside the canopy q[canopy] are determined by a first order

linearization of the previous equations system.

The soil surface temperature method prediction is namely the force restore method (Bhumralkar, 1975; Blackadar, 1976) and20

requires deep soil temperature T2. T2 can be estimated from the mean air temperature over the 24 previous hours for short-

range studies (Blackadar, 1976). The heat capacity is prescribed by de Vries’s model (1963) and hydrodynamic properties result

from pedotransfer functions (retention curve, hydraulic conductivity) based on Genuchten’s approach (1980) under Mualem
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hypothesis (1976).

Prognostic equation for ground surface temperature is written as:

∂T[soil]

∂t
=

2
√
π

Ce
(Rn−H −LE)− 2π

τ

(
T[soil]−T2

)
. (A2)

The factor Ce is an equivalent heat capacity related to the diurnal thermal wave damping layer. In SEtHyS, the parameteri-

zation of the equivalent heat capacity has been weighted by introducing an empirical factor (Ftherm in parameters list, Table5

2) compared to Deardorff (1978).

Deardorff (1978) proposed a similar approach of ground soil moisture, leading to the following equations:

∂wg
∂t

= −
Eg + 0.2Ev

(
wg

wmax

)
−P

dp1

−C (wg,w2)(wg −w2) (A3)
∂w2

∂t
= −Eg +Ev −P

dp2
, (A4)10

where wmax is the soil moisture at soil saturation, wg and w2 are surface and root zone water contents, P is the precipitation

rate, dp1 and dp2 are the surface and root zone layers depths.

A2 Radiative budget

Incoming radiation partition for optical (VIS) and infrared (IR) wavelength is performed through a shielding factor σf tighly15

linked to vegetation density. Its expression is as follows by considering a spherical distribution of leaves (François, 2002) with

the hypothesis of diffuse radiation for longwave domain and direct vertical radiation in shortwave domain:





σf = 1− e−0.825LAI for longwave domain

σf = 1− e−0.5LAI for shortwave domain
(A5)

Radiative budget is then solved jointly at the soil and at the vegetation level for short and long wavelengths. Concerning short

wavelengths, soil albedo αsoil is linearly linked to surface soil moisture. Vegetation albedo αveg is a model parameter. The net20

radiation for the soil Rn[soil],SW and for the vegetation Rn[veg],SW are as follow (“Mod3” parameterization as proposed in

François, 2002):

Rn[soil],SW = S↓
(1−σf )(1−αsoil)

1−σfαvegαsoil
, (A6)
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and at canopy level:

Rn[veg],SW = S↓(1−αveg)σf
[
1 +αsoil

(1−σf )
1−σfαsoilαveg

]
(A7)

where S↓ is the incoming shortwave radiation.

Concerning long wavelengths, the net radiation for soil Rn[soil],LW and vegetation Rn[veg],LW are given by:

Rn[soil],LW = (1−σf )
εg(R↓a−σT 4

[soil])

1−σf (1− εf )(1− εg)
5

−
εgεfσfσ(T 4

[soil]−T 4
[veg])

1−σf (1− εf )(1− εg)
(A8)

Rn[veg],LW = σf

[
εf (R↓a−σT 4

f ) +
εgεfσ(T 4

[soil]−T 4
[veg])

1−σf (1− εf )(1− εg)

]

+σf
(1− εf )(1− εg)εf (R↓a−σT 4

[veg])

1−σf (1− εf )(1− εg)
(A9)

Direct solar shortwave radiation S↓ and atmospheric longwave radiation R↓ are input model data.

The thermal infrared surface temperature TB (observed above the canopy) results from the partitioning of the surface and the10

radiative interaction between soil (whose temperature is T[soil]) and the vegetation above (whose temperature is T[veg]).

A3 Heat fluxes expressions

The mass and energy transfers in equilibrium with net surface radiation are momentum, sensible and latent heat fluxes. A

conductance formalism allows expressing them by considering the canopy as a single vegetation layer (at some height Zaf )

above ground (Thom, 1972). Thus, following the electrical (Ohm’s law) analogy, soil surface, leaves surface, air canopy space15

and atmosphere above canopy are the levels between which differences of potential (temperature and humidity gradients) and

transfer coefficients i.e. aerodynamic conductances can be calculated.

Heat fluxes H and LE (sensible and latent heat fluxes respectively) are then determined at three levels:

at atmospheric reference level,

H = ρcpCh
(
T[canopy]−Ta

)
(A10)20

LE =
ρcp
γ
Ch
(
q[canopy]− qa

)
(A11)
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at vegetation level,

H[veg] = ρcpCh[veg]
(
T[veg]−T[canopy]

)
(A12)

LE[veg] =
ρcp
γ
Ch[veg]R

′ (qsat(T[veg])− q[canopy]
)

(A13)

and at ground level,

H[soil] = ρcpCh[soil]
(
T[soil]−T[canopy]

)
(A14)5

LE[soil] =
ρcp
γ
Ch[soil]Cs

(
qsat(T[soil])− q[canopy]

)
(A15)

with

LE = LE[soil] +LE[veg] (A16)

H =H[soil] +H[veg] (A17)

and G conduction heat flux in soil is residual of the energy budget :10

G=Rn[soil],LW +Rn[soil],SW −H[soil]˘LE[soil] (A18)

where Cp is the specific heat at constant pressure, γ is the psychrometric constant, T , q are temperature and water vapor

pressure and a, g, canopy are indices relative to air, ground, and canopy air space.

Ch, Ch[veg] and Ch[soil] are respectively aerodynamic conductances between canopy air space and the overlaying atmosphere,

leaves surface and canopy air space, ground and canopy air space, R
′

factor is defined below. These variables are derived15

from the eddy fluxes theory between two atmospheric levels. In SEtHyS model, the formulation follows the parameterization

proposed by Shuttleworth and Wallace (1985) with a constant extinction coefficient in the exponential wind speed profile.

Cs is the ground evaporation conductance; it depends on soil moisture conditions and potential evaporation Epot[soil] (Bernard

et al., 1986; Wetzel and Chang, 1988; Soares et al., 1988):

Cs = min
(

1,
Elim

Epot[soil]

)
, (A19)20
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where Elim depends on soil properties (composition and moisture), Soares et al. (1988) gives the expression:

Elim = aElim
(
exp(bElim(wg −wresid)2)− 1

)
(A20)

aElim and bElim are model parameters related to soil evaporation response.

R
′

factor in Eq.(A13) accounts for stomatal resistance and to the fact that only the fraction of the canopy area which is not

covered by water will contribute to evapotranspiration. Deardorff (1978) proposed the expression:5

R
′
=
(
dew

dmax

)2/3

+

[
1−

(
dew

dmax

)2/3
]

1
(β+CfhRST )

, (A21)

R
′
= 1 for condensation,

where "dew" (resp. "dmax") is the fraction (resp. the maximal one) of free water on the foliage. RST is the stomatal resistance,

this factor governs the canopy participation to the energy budget and is responsible for partition between sensible and latent

heat fluxes.10

In the model, calculation of RST is based on Collatz et al. (1991, 1992) and is the same as in SiB models (Sellers et al.,

1992, 1996a). Biophysical and environmental variables manage photosynthesis processes giving CO2 assimilation rate and

then stomatal conductance of the foliage.

Ball (1988) gives the following leaf stomatal conductance expression:

gs =m
An
cs
hsp+ b (A22)15

where An is net assimilation rate calculated by the model of Farquhar et al. (1980), cs and hs are CO2 partial pressure and

relative humidity at leaf surface, p is atmospheric pressure, m and b are empirical factors from observations depending on

vegetation type (C3 or C4).

Assimilation rate is determined by means of three factors, a photosynthetic enzyme (Rubisco) limiting rate, a light limiting

rate and a limiting rate owing to the leaf capacity to export or utilize the photosynthesis products (Collatz et al., 1991). In the20

model, the iterative solution method for the photosynthesis-stomatal conductance calculation proposed by Collatz et al. (1991)

has been implemented. Indeed, canopy is considered as a "big leaf" assuming bulk or integral values over canopy depth used in

the integrated form of Eq.(A22) (see Sellers et al., 1992). Stomatal conductance and net assimilation rate are then determined

for the canopy.
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Table 3. Sites characteristics and overview of available cultures.

Site Auradé Lamasquère Sidi Rahal

Location France France Morocco

Latitude 43.54984444 °N 43.49737222 °N 31.665852 °N

Longitude 1.10563611 °E 1.23721944 °E 7.597873 °W

Climate temperate temperate semi-arid

Soil type Clay loam Clay Clay

sand[%] silt[%] clay[%] 21 47 32 12 34 54 20 34 46

Depth [m] 0.6 1 1

Slope [%] 2 0 1

2004 Culture - - Wheat *

Growth cycle length [days] - - 133

Maximum LAI [m2 m−2] - - 3.76

Cumulated rain [mm] - - 135

Cumulated irrigation [mm] - - 120

2006 Culture Wheat Corn * -

Growth cycle length [days] 246 123 -

Maximum LAI [m2 m−2] 3.13 3.33 -

Cumulated rain [mm] 397 132 -

Cumulated irrigation [mm] 0 148 -

2007 Culture Sunflower Wheat -

Growth cycle length [days] 157 271 -

Maximum LAI [m2 m−2] 1.74 4.47 -

Cumulated rain [mm] 456 531 -

Cumulated irrigation [mm] 0 0 -

2008 Culture Wheat Corn * -

Growth cycle length [days] 248 175 -

Maximum LAI [m2 m−2] 2.39 3.28 -

Cumulated rain [mm] 491 397 -

Cumulated irrigation [mm] 0 50 -

* irrigated cultures.
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Table 4. Intercomparison of TSEB and SEtHyS performances (RMSE), with influence of time resolution, phenological stage, culture and

climate.

RMSE [W m−2]

Rn H LE

TSEB SEtHyS TSEB SEtHyS TSEB SEtHyS

Time resolution Overall (time step) 46.5 25.7 28.9 38.0 54.7 47.1

Overall (daily average) 42.7 18.9 21.2 28.7 38.9 35.5

Phenology Rising 22.1 15.3 110.2 44.1 88.3 44.0

Growth 30.9 24.5 21.7 28.3 51.6 43.4

Max of vegetation 51.1 20.2 24.6 40.8 55.5 48.1

Senescence 55.0 29.4 43.5 47.3 54.0 42.1

Hydric stress 53.2 21.6 44.9 49.3 49.6 30.6

Culture Wheat 49.7 29.5 32.9 37.6 49.2 45.6

Corn 46.0 18.1 22.9 40.2 64.4 52.6

Sunflower 39.1 27.2 27.1 35.1 49.0 39.5

Climate France (wheat) 35.1 32.6 35.1 36.4 52.5 42.9

Morocco (wheat) 25.6 15.2 25.6 40.8 36.3 53.4

43

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-295
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 17 September 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 5. Comparison of in situ data and spatial data (SAFRAN, ASTER, and inversed NDVI)

Forcing Source Variables [unit] Description
Mean error "Extreme" error

RMSE BIAS 1st decile 9th decile

Meteo SAFRAN Ta [◦C] Air temperature 1.5 0.7 -1.5 (-10 %) 1.3 (+10 %)

Ua [m s−1] Wind speed 1.4 -0.7 -0.65 (-30 %) 2.3 (+90 %)

Rh [%] Relative humidity 7 8 -12 (-15 %) 5(+8 %)

Rg [W m−2] Global radiation 90 35 -186 (-40 %) 125 (+60 %)

Ra [W m−2] Atmospheric radiation 30 14 -51 (-15 %) 20 (+7 %)

Vegetation FORMOSAT LAI [m2 m−2] Leaf Area Index - 20 % -50 % +50 %

hc [m] Canopy height - 20 % -100 % +100 %

LST ASTER Ts [K] Surface temperature 2 - - -

44

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-295
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 17 September 2018
c© Author(s) 2018. CC BY 4.0 License.


